Decentralized circadian clocks process thermal and photoperiodic cues in specific tissues.

نویسندگان

  • Hanako Shimizu
  • Kana Katayama
  • Tomoko Koto
  • Kotaro Torii
  • Takashi Araki
  • Motomu Endo
چکیده

The circadian clock increases organisms' fitness by regulating physiological responses(1). In mammals, the circadian clock in the suprachiasmatic nucleus (SCN) governs daily behavioural rhythms(2). Similarly, in Arabidopsis, tissue-specific circadian clock functions have emerged, and the importance of the vasculature clock for photoperiodic flowering has been demonstrated(3-5). However, it remains unclear if the vasculature clock regulates the majority of physiological responses, like the SCN in mammals, and if other environmental signals are also processed by the vasculature clock. Here, we studied the involvement of tissue-specific circadian clock regulation of flowering and cell elongation under different photoperiods and temperatures. We found that the circadian clock in vascular phloem companion cells is essential for photoperiodic flowering regulation; by contrast, the epidermis has a crucial impact on ambient temperature-dependent cell elongation. Thus, there are clear assignments of roles among circadian clocks in each tissue. Our results reveal that, unlike the more centralized circadian clock in mammals, the plant circadian clock is decentralized, where each tissue specifically processes individual environmental cues and regulates individual physiological responses. Our new conceptual framework will be a starting point for deciphering circadian clock functions in each tissue, which will lead to a better understanding of how circadian clock processing of environmental signals may be affected by ongoing climate change(6).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis.

Higher plants use photoperiodic cues to regulate many aspects of development, including the transition from vegetative to floral development. The EARLY FLOWERING3 (ELF3) gene is required for photoperiodic flowering and normal circadian regulation in Arabidopsis. We have cloned ELF3 by positional methods and found that it encodes a novel 695-amino acid protein that may function as a transcriptio...

متن کامل

Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis.

Protein ubiquitination is involved in most cellular processes. In Arabidopsis (Arabidopsis thaliana), ubiquitin-mediated protein degradation regulates the stability of key components of the circadian clock feedback loops and the photoperiodic flowering pathway. Here, we identified two ubiquitin-specific proteases, UBP12 and UBP13, involved in circadian clock and photoperiodic flowering regulati...

متن کامل

C H IN A Synchronization of peripheral circadian clocks in rats by external time cues

Circadian clocks are present in a variety of tissues and cells in mammals and appear to be organized in a hierarchical manner. They are divided into a master clock that is localized in the hypothalamic suprachiasmatic nucleus (SCN) and peripheral clocks in extra-SCN brain regions and peripheral tissues, such as heart and liver. The circadian clock is generally reset by environmental time cues, ...

متن کامل

Feeding and circadian clocks.

The mammalian genome encodes at least a dozen of genes directly involved in the regulation of the feedback loops constituting the circadian clock. The circadian system is built up on a multitude of oscillators organized according to a hierarchical model in which neurons of the suprachiasmatic nuclei of the hypothalamus may drive the central circadian clock and all the other somatic cells may po...

متن کامل

The Role of Circadian Rhythms in Muscular and Osseous Physiology and Their Regulation by Nutrition and Exercise

The mammalian circadian clock regulates the day and night cycles of various physiological functions. The circadian clock system consists of a central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks in peripheral tissues. According to the results of circadian transcriptomic studies in several tissues, the majority of rhythmic genes are expressed in a tissue-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature plants

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015